需要用到的第三方库:
numpy:本例结合wordcloud使用
jieba:
PIL: 对图像进行处理(本例与wordcloud结合使用)
snowlp:
wordcloud:
matplotlib:绘制2D图形# -*- coding: utf-8 -*-"""朋友圈朋友签名的词云生成以及签名情感分析想要学习Python?Python学习交流群:984632579满足你的需求,资料都已经上传群文件,可以自行下载!"""import re,jieba,itchatimport jieba.analyseimport numpy as npfrom PIL import Imagefrom snownlp import SnowNLPfrom wordcloud import WordCloudimport matplotlib.pyplot as pltitchat.auto_login(hotReload=True)friends = itchat.get_friends(update=True)def analyseSignature(friends): signatures = '' emotions = [] for friend in friends: signature = friend['Signature'] if(signature != None): signature = signature.strip().replace('span', '').replace('class', '').replace('emoji', '') signature = re.sub(r'1f(\d.+)','',signature) if(len(signature)>0): nlp = SnowNLP(signature) emotions.append(nlp.sentiments) signatures += ' '.join(jieba.analyse.extract_tags(signature,5)) with open('signatures.txt','wt',encoding='utf-8') as file: file.write(signatures) # 朋友圈朋友签名的词云相关属性设置 back_coloring = np.array(Image.open('alice_color.png')) wordcloud = WordCloud( font_path='simfang.ttf', background_color="white", max_words=1200, mask=back_coloring, max_font_size=75, random_state=45, width=1250, height=1000, margin=15 ) #生成朋友圈朋友签名的词云 wordcloud.generate(signatures) plt.imshow(wordcloud) plt.axis("off") plt.show() wordcloud.to_file('signatures.jpg')#保存到本地文件 # Signature Emotional Judgment count_good = len(list(filter(lambda x:x>0.66,emotions)))#正面积极 count_normal = len(list(filter(lambda x:x>=0.33 and x<=0.66,emotions)))#中性 count_bad = len(list(filter(lambda x:x<0.33,emotions)))#负面消极 labels = [u'负面消极',u'中性',u'正面积极'] values = (count_bad,count_normal,count_good) plt.rcParams['font.sans-serif'] = ['simHei'] plt.rcParams['axes.unicode_minus'] = False plt.xlabel(u'情感判断')#x轴 plt.ylabel(u'频数')#y轴 plt.xticks(range(3),labels) plt.legend(loc='upper right',) plt.bar(range(3), values, color = 'rgb') plt.title(u'%s的微信好友签名信息情感分析' % friends[0]['NickName']) plt.show()analyseSignature(friends)
效果图